Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Psychol Sport Exerc ; 73: 102647, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604572

RESUMO

This analysis of secondary outcomes investigated the applicability of supramaximal high-intensity interval training (HIT) with individually prescribed external intensity performed on stationary bicycles. Sixty-eight participants with a median (min; max) age of 69 (66; 79), at the time not engaged in regular exercise were randomized to 25 twice-weekly sessions of supramaximal HIT (20-min session with 10 × 6-s intervals) or moderate-intensity training (MIT, 40-min session with 3 × 8-min intervals). The primary aim was outcomes on applicability regarding; adherence to prescribed external interval intensity, participant reported positive and negative events, ratings of perceived exertion (RPE 6-20), and affective state (Feeling Scale, FS -5-5). A secondary aim was to investigate change in exercise-related self-efficacy (Exercise Self-Efficacy Scale) and motivation (Behavioural Regulations in Exercise Questionnaire-2). Total adherence to the prescribed external interval intensity was [median (min; max)] 89 % (56; 100 %) in supramaximal HIT, and 100 % (95; 100 %) in MIT. The supramaximal HIT group reported 60 % of the positive (112 of 186) and 36 % of the negative (52 of 146) events. At the end of the training period, the median (min; max) session RPE was 15 (12; 17) for supramaximal HIT and 14 (9; 15) for MIT. As for FS, the median last within-session rating was 3 (-1; 5) for supramaximal HIT and 3 (1; 5) for MIT. Exercise-related motivation increased (mean difference in Relative Autonomy Index score = 1.54, 95 % CI [0.69; 2.40]), while self-efficacy did not change (mean difference = 0.55, 95 % CI [-0.75; 1.82]), regardless of group. This study provide support for supramaximal HIT in supervised group settings for older adults.

2.
Comput Methods Programs Biomed ; 245: 108008, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290291

RESUMO

BACKGROUND AND OBJECTIVES: Reliable detection of white matter hyperintensities (WMH) is crucial for studying the impact of diffuse white-matter pathology on brain health and monitoring changes in WMH load over time. However, manual annotation of 3D high-dimensional neuroimages is laborious and can be prone to biases and errors in the annotation procedure. In this study, we evaluate the performance of deep learning (DL) segmentation tools and propose a novel volumetric segmentation model incorporating self-attention via a transformer-based architecture. Ultimately, we aim to evaluate diverse factors that influence WMH segmentation, aiming for a comprehensive analysis of the state-of-the-art algorithms in a broader context. METHODS: We trained state-of-the-art DL algorithms, and incorporated advanced attention mechanisms, using structural fluid-attenuated inversion recovery (FLAIR) image acquisitions. The anatomical MRI data utilized for model training was obtained from healthy individuals aged 62-70 years in the Live active Successful Aging (LISA) project. Given the potential sparsity of lesion volume among healthy aging individuals, we explored the impact of incorporating a weighted loss function and ensemble models. To assess the generalizability of the studied DL models, we applied the trained algorithm to an independent subset of data sourced from the MICCAI WMH challenge (MWSC). Notably, this subset had vastly different acquisition parameters compared to the LISA dataset used for training. RESULTS: Consistently, DL approaches exhibited commendable segmentation performance, achieving the level of inter-rater agreement comparable to expert performance, ensuring superior quality segmentation outcomes. On the out of sample dataset, the ensemble models exhibited the most outstanding performance. CONCLUSIONS: DL methods generally surpassed conventional approaches in our study. While all DL methods performed comparably, incorporating attention mechanisms could prove advantageous in future applications with a wider availability of training data. As expected, our experiments indicate that the use of ensemble-based models enables the superior generalization in out-of-distribution settings. We believe that introducing DL methods in the WHM annotation workflow in heathy aging cohorts is promising, not only for reducing the annotation time required, but also for eventually improving accuracy and robustness via incorporating the automatic segmentations in the evaluation procedure.


Assuntos
Aprendizado Profundo , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
3.
Heliyon ; 9(10): e20534, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37818016

RESUMO

Physical activity (PA) promotes brain health in a variety of domains including cognition, mood, and neuroplasticity. At the neurochemical level, the mechanisms underlying these effects in the brain are not fully understood. With proton Magnetic Resonance Spectroscopy (1H-MRS), it is possible to non-invasively quantify metabolite concentrations, enabling studies to obtain measures of exercise-induced neurochemical changes. This systematic review aimed to examine the existing literature on acute effects of PA on brain metabolites as measured by 1H-MRS. Four databases (Cochrane Central Register of Controlled Trials, PubMed, Embase, and PsycINFO) were searched, identifying 2965 studies, of which 9 met the inclusion criteria. Across studies, Gamma-AminoButyric Acid (GABA) and lactate tended to increase after exercise, while no significant changes in choline were reported. For glutamine/glutamate (Glx), studies were inconclusive. Conclusions were limited by the lack of consensus on 1H-MRS data processing and exercise protocols. To reduce inter-study differences, future studies are recommended to (1): apply a standardized exercise index (2), consider the onset time of MRS scans, and (3) follow standardized MRS quantification methods.

4.
Nat Hum Behav ; 7(11): 2008-2022, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37798367

RESUMO

Short sleep is held to cause poorer brain health, but is short sleep associated with higher rates of brain structural decline? Analysing 8,153 longitudinal MRIs from 3,893 healthy adults, we found no evidence for an association between sleep duration and brain atrophy. In contrast, cross-sectional analyses (51,295 observations) showed inverse U-shaped relationships, where a duration of 6.5 (95% confidence interval, (5.7, 7.3)) hours was associated with the thickest cortex and largest volumes relative to intracranial volume. This fits converging evidence from research on mortality, health and cognition that points to roughly seven hours being associated with good health. Genome-wide association analyses suggested that genes associated with longer sleep for below-average sleepers were linked to shorter sleep for above-average sleepers. Mendelian randomization did not yield evidence for causal impacts of sleep on brain structure. The combined results challenge the notion that habitual short sleep causes brain atrophy, suggesting that normal brains promote adequate sleep duration-which is shorter than current recommendations.


Assuntos
Duração do Sono , Transtornos do Sono-Vigília , Adulto , Humanos , Estudos Transversais , Estudo de Associação Genômica Ampla , Encéfalo/diagnóstico por imagem , Transtornos do Sono-Vigília/diagnóstico por imagem , Transtornos do Sono-Vigília/genética , Atrofia
5.
Neurobiol Aging ; 131: 115-123, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37619515

RESUMO

Modifiable lifestyle factors have been shown to promote healthy brain ageing. However, studies have typically focused on a single factor at a time. Given that lifestyle factors do not occur in isolation, multivariable analyses provide a more realistic model of the lifestyle-brain relationship. Here, canonical correlation analyses (CCA) examined the relationship between nine lifestyle factors and seven MRI-derived indices of brain structure. The resulting covariance pattern was further explored with Bayesian regressions. CCA analyses were first conducted on a Danish cohort of older adults (n = 251) and then replicated in a British cohort (n = 668). In both cohorts, the latent factors of lifestyle and brain structure were positively correlated (UK: r = .37, p < 0.001; Denmark: r = .27, p < 0.001). In the cross-validation study, the correlation between lifestyle-brain latent factors was r = .10, p = 0.008. However, the pattern of associations differed between datasets. These findings suggest that baseline characterisation and tailoring towards the study sample may be beneficial for achieving targeted lifestyle interventions.


Assuntos
Envelhecimento , Encéfalo , Humanos , Idoso , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Estilo de Vida , Imageamento por Ressonância Magnética
6.
Aging Brain ; 4: 100082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457634

RESUMO

Contemporary accounts of factors that may modify the risk for age-related neurocognitive disorders highlight education and its contribution to a cognitive reserve. By this view, individuals with higher educational attainment should show weaker associations between changes in brain and cognition than individuals with lower educational attainment. We tested this prediction in longitudinal data on hippocampus volume and episodic memory from 708 middle-aged and older individuals using local structural equation modeling. This technique does not require categorization of years of education and does not constrain the shape of relationships, thereby maximizing the chances of revealing an effect of education on the hippocampus-memory association. The results showed that the data were plausible under the assumption that there was no influence of education on the association between change in episodic memory and change in hippocampus volume. Restricting the sample to individuals with elevated genetic risk for dementia (APOE ε4 carriers) did not change these results. We conclude that the influence of education on changes in episodic memory and hippocampus volume is inconsistent with predictions by the cognitive reserve theory.

7.
Brain Res Bull ; 200: 110692, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37336327

RESUMO

BACKGROUND: Lifestyle-related risk factors, such as obesity, physical inactivity, short sleep, smoking and alcohol use, have been associated with low hippocampal and total grey matter volumes (GMV). However, these risk factors have mostly been assessed as separate factors, leaving it unknown if variance explained by these factors is overlapping or additive. We investigated associations of five lifestyle-related factors separately and cumulatively with hippocampal and total GMV, pooled across eight European cohorts. METHODS: We included 3838 participants aged 18-90 years from eight cohorts of the European Lifebrain consortium. Using individual person data, we performed cross-sectional meta-analyses on associations of presence of lifestyle-related risk factors separately (overweight/obesity, physical inactivity, short sleep, smoking, high alcohol use) as well as a cumulative unhealthy lifestyle score (counting the number of present lifestyle-related risk factors) with FreeSurfer-derived hippocampal volume and total GMV. Lifestyle-related risk factors were defined according to public health guidelines. RESULTS: High alcohol use was associated with lower hippocampal volume (r = -0.10, p = 0.021), and overweight/obesity with lower total GMV (r = -0.09, p = 0.001). Other lifestyle-related risk factors were not significantly associated with hippocampal volume or GMV. The cumulative unhealthy lifestyle score was negatively associated with total GMV (r = -0.08, p = 0.001), but not hippocampal volume (r = -0.01, p = 0.625). CONCLUSIONS: This large pooled study confirmed the negative association of some lifestyle-related risk factors with hippocampal volume and GMV, although with small effect sizes. Lifestyle factors should not be seen in isolation as there is evidence that having multiple unhealthy lifestyle factors is associated with a linear reduction in overall brain volume.


Assuntos
Substância Cinzenta , Sobrepeso , Humanos , Adulto , Substância Cinzenta/diagnóstico por imagem , Sobrepeso/diagnóstico por imagem , Sobrepeso/epidemiologia , Longevidade , Estudos Transversais , Estilo de Vida , Fatores de Risco , Obesidade
8.
J Neurosci ; 43(28): 5241-5250, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37365003

RESUMO

Many sleep less than recommended without experiencing daytime sleepiness. According to prevailing views, short sleep increases risk of lower brain health and cognitive function. Chronic mild sleep deprivation could cause undetected sleep debt, negatively affecting cognitive function and brain health. However, it is possible that some have less sleep need and are more resistant to negative effects of sleep loss. We investigated this using a cross-sectional and longitudinal sample of 47,029 participants of both sexes (20-89 years) from the Lifebrain consortium, Human Connectome project (HCP) and UK Biobank (UKB), with measures of self-reported sleep, including 51,295 MRIs of the brain and cognitive tests. A total of 740 participants who reported to sleep <6 h did not experience daytime sleepiness or sleep problems/disturbances interfering with falling or staying asleep. These short sleepers showed significantly larger regional brain volumes than both short sleepers with daytime sleepiness and sleep problems (n = 1742) and participants sleeping the recommended 7-8 h (n = 3886). However, both groups of short sleepers showed slightly lower general cognitive function (GCA), 0.16 and 0.19 SDs, respectively. Analyses using accelerometer-estimated sleep duration confirmed the findings, and the associations remained after controlling for body mass index, depression symptoms, income, and education. The results suggest that some people can cope with less sleep without obvious negative associations with brain morphometry and that sleepiness and sleep problems may be more related to brain structural differences than duration. However, the slightly lower performance on tests of general cognitive abilities warrants closer examination in natural settings.SIGNIFICANCE STATEMENT Short habitual sleep is prevalent, with unknown consequences for brain health and cognitive performance. Here, we show that daytime sleepiness and sleep problems are more strongly related to regional brain volumes than sleep duration. However, participants sleeping ≤6 h had slightly lower scores on tests of general cognitive function (GCA). This indicates that sleep need is individual and that sleep duration per se is very weakly if at all related brain health, while daytime sleepiness and sleep problems may show somewhat stronger associations. The association between habitual short sleep and lower scores on tests of general cognitive abilities must be further scrutinized in natural settings.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Transtornos do Sono-Vigília , Masculino , Feminino , Humanos , Estudos Transversais , Encéfalo/diagnóstico por imagem , Sono , Privação do Sono/diagnóstico por imagem , Transtornos do Sono-Vigília/complicações , Cognição , Distúrbios do Sono por Sonolência Excessiva/complicações , Distúrbios do Sono por Sonolência Excessiva/diagnóstico
9.
Hum Brain Mapp ; 44(11): 4299-4309, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219945

RESUMO

Understanding individual variability in response to physical activity is key to developing more effective and personalised interventions for healthy ageing. Here, we aimed to unpack individual differences by using longitudinal data from a randomised-controlled trial of a 12-month muscle strengthening intervention in older adults. Physical function of the lower extremities was collected from 247 participants (66.3 ± 2.5 years) at four time-points. At baseline and at year 4, participants underwent 3 T MRI brain scans. K-means longitudinal clustering was used to identify patterns of change in chair stand performance over 4 years, and voxel-based morphometry was applied to map structural grey matter volume at baseline and year 4. Results identified three groups showing trajectories of poor (33.6%), mid (40.1%), and high (26.3%) performance. Baseline physical function, sex, and depressive symptoms significantly differed between trajectory groups. High performers showed greater grey matter volume in the motor cerebellum compared to the poor performers. After accounting for baseline chair stand performance, participants were re-assigned to one of four trajectory-based groups: moderate improvers (38.9%), maintainers (38.5%), improvers (13%), and decliners (9.7%). Clusters of significant grey matter differences were observed between improvers and decliners in the right supplementary motor area. Trajectory-based group assignments were unrelated to the intervention arms of the study. In conclusion, patterns of change in chair stand performance were associated with greater grey matter volumes in cerebellar and cortical motor regions. Our findings emphasise that how you start matters, as baseline chair stand performance was associated with cerebellar volume 4 years later.


Assuntos
Córtex Cerebral , Substância Cinzenta , Humanos , Idoso , Substância Cinzenta/diagnóstico por imagem , Neuroimagem , Imageamento por Ressonância Magnética/métodos , Cerebelo
10.
Transl Psychiatry ; 13(1): 124, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37055419

RESUMO

Premenstrual dysphoric disorder (PMDD) is a debilitating disorder characterized by severe mood symptoms in the luteal phase of the menstrual cycle. PMDD symptoms are hypothesized to be linked to an altered sensitivity to normal luteal phase levels of allopregnanolone (ALLO), a GABAA-modulating progesterone metabolite. Moreover, the endogenous 3ß-epimer of ALLO, isoallopregnanolone (ISO), has been shown to alleviate PMDD symptoms through its selective and dose-dependent antagonism of the ALLO effect. There is preliminary evidence showing altered recruitment of brain regions during emotion processing in PMDD, but whether this is associated to serum levels of ALLO, ISO or their relative concentration is unknown. In the present study, subjects with PMDD and asymptomatic controls underwent functional magnetic resonance imaging (fMRI) in the mid-follicular and the late-luteal phase of the menstrual cycle. Brain responses to emotional stimuli were investigated and related to serum levels of ovarian steroids, the neurosteroids ALLO, ISO, and their ratio ISO/ALLO. Participants with PMDD exhibited greater activity in brain regions which are part of emotion-processing networks during the late-luteal phase of the menstrual cycle. Furthermore, activity in key regions of emotion processing networks - the parahippocampal gyrus and amygdala - was differentially associated to the ratio of ISO/ALLO levels in PMDD subjects and controls. Specifically, a positive relationship between ISO/ALLO levels and brain activity was found in PMDD subjects, while the opposite was observed in controls. In conclusion, individuals with PMDD show altered emotion-induced brain responses in the late-luteal phase of the menstrual cycle which may be related to an abnormal response to physiological levels of GABAA-active neurosteroids.


Assuntos
Neuroesteroides , Transtorno Disfórico Pré-Menstrual , Feminino , Humanos , Transtorno Disfórico Pré-Menstrual/metabolismo , Progesterona/farmacologia , Neuroesteroides/farmacologia , Ciclo Menstrual/fisiologia , Emoções/fisiologia , Encéfalo/metabolismo , Ácido gama-Aminobutírico
11.
J Gerontol A Biol Sci Med Sci ; 78(9): 1581-1590, 2023 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36972981

RESUMO

BACKGROUND: This study examined the effects of regulated and controlled supramaximal high-intensity interval training (HIT) adapted for older adults, compared to moderate-intensity training (MIT), on cardiorespiratory fitness; cognitive, cardiovascular, and muscular function; and quality of life. METHODS: Sixty-eight nonexercising older adults (66-79 years, 44% males) were randomized to 3 months of twice-weekly HIT (20-minute session including 10 × 6-second intervals) or MIT (40-minute session including 3 × 8-minute intervals) on stationary bicycles in an ordinary gym setting. Individualized target intensity was watt controlled with a standardized pedaling cadence and individual adjustment of the resistance load. Primary outcomes were cardiorespiratory fitness (V̇o2peak) and global cognitive function (unit-weighted composite). RESULTS: V̇o2peak increased significantly (mean 1.38 mL/kg/min, 95% CI [0.77, 1.98]), with no between-group difference (mean difference 0.05 [-1.17, 1.25]). Global cognition did not improve (0.02 [-0.05, 0.09]), nor differed between groups (0.11 [-0.03, 0.24]). Significant between-group differences in change were observed for working memory (0.32 [0.01, 0.64]), and maximal isometric knee extensor muscle strength (0.07 N·m/kg [0.003, 0.137]), both in favor of HIT. Irrespective of the group, there was a negative change in episodic memory (-0.15 [-0.28, -0.02]), a positive change in visuospatial ability (0.26 [0.08, 0.44]), and a decrease in systolic (-2.09 mmHg [-3.54, -0.64]) and diastolic (-1.27 mmHg [-2.31, -0.25]) blood pressure. CONCLUSIONS: In nonexercising older adults, 3 months of watt-controlled supramaximal HIT improved cardiorespiratory fitness and cardiovascular function to a similar extent as MIT, despite half the training time. In favor of HIT, there was an improvement in muscular function and a potential domain-specific effect on working memory. CLINICAL TRIAL REGISTRATION: NCT03765385.


Assuntos
Aptidão Cardiorrespiratória , Treinamento Intervalado de Alta Intensidade , Masculino , Humanos , Feminino , Idoso , Qualidade de Vida , Cognição
12.
Stress ; 26(1): 2188092, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36883330

RESUMO

Stress-related exhaustion is associated with cognitive deficits, measured subjectively using questionnaires targeting everyday slips and failures or more objectively as performance on cognitive tests. Yet, only weak associations between subjective and objective cognitive measures in this group has been presented, theorized to reflect recruitment of compensational resources during cognitive testing. This explorative study investigated how subjectively reported symptoms of cognitive functioning and burnout levels relate to performance as well as neural activation during a response inhibition task. To this end, 56 patients diagnosed with stress-related exhaustion disorder (ED; ICD-10 code F43.8A) completed functional magnetic resonance imaging (fMRI) using a Flanker paradigm. In order to investigate associations between neural activity and subjective cognitive complaints (SCCs) and burnout, respectively, scores on the Prospective and Retrospective Memory Questionnaire (PRMQ) and the Shirom-Melamed Burnout Questionnaire (SMBQ) were added as covariates of interest to a general linear model at the whole-brain level. In agreement with previous research, the results showed that SCCs and burnout levels were largely unrelated to task performance. Moreover, we did not see any correlations between these self-report measures and altered neural activity in frontal brain regions. Instead, we observed an association between the PRMQ and increased neural activity in an occipitally situated cluster. We propose that this finding may reflect compensational processes at the level of basic visual attention which could go unnoticed in cognitive testing but still be reflected in the experience of deficits in everyday cognitive functioning.


Assuntos
Esgotamento Profissional , Disfunção Cognitiva , Humanos , Estudos Retrospectivos , Estudos Prospectivos , Estresse Psicológico/psicologia , Disfunção Cognitiva/diagnóstico por imagem , Cognição , Testes Neuropsicológicos , Esgotamento Profissional/psicologia
13.
Front Hum Neurosci ; 17: 969101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742357

RESUMO

Introduction: Studies indicate that brain response during proprioceptive tasks predominates in the right hemisphere. A right hemisphere lateralization for proprioception may help to explain findings that right-limb dominant individuals perform position matching tasks better with the non-dominant left side. Evidence for proprioception-related brain response and side preference is, however, limited and based mainly on studies of the upper limbs. Establishing brain response associated with proprioceptive acuity for the lower limbs in asymptomatic individuals could be useful for understanding the influence of neurological pathologies on proprioception and locomotion. Methods: We assessed brain response during an active unilateral knee joint position sense (JPS) test for both legs of 19 right-limb dominant asymptomatic individuals (females/males = 12/7; mean ± SD age = 27.1 ± 4.6 years). Functional magnetic resonance imaging (fMRI) mapped brain response and simultaneous motion capture provided real-time instructions based on kinematics, accurate JPS errors and facilitated extraction of only relevant brain images. Results: Significantly greater absolute (but not constant nor variable) errors were seen for the dominant right knee (5.22° ± 2.02°) compared with the non-dominant left knee (4.39° ± 1.79°) (P = 0.02). When limbs were pooled for analysis, significantly greater responses were observed mainly in the right hemisphere for, e.g., the precentral gyrus and insula compared with a similar movement without position matching. Significant response was also observed in the left hemisphere for the inferior frontal gyrus pars triangularis. When limbs were assessed independently, common response was observed in the right precentral gyrus and superior frontal gyrus. For the right leg, additional response was found in the right middle frontal gyrus. For the left leg, additional response was observed in the right rolandic operculum. Significant positive correlations were found between mean JPS absolute errors for the right knee and simultaneous brain response in the right supramarginal gyrus (r = 0.464, P = 0.040). Discussion: Our findings support a general right brain hemisphere lateralization for proprioception (knee JPS) of the lower limbs regardless of which limb is active. Better proprioceptive acuity for the non-dominant left compared with the dominant right knee indicates that right hemisphere lateralization may have meaningful implications for motor control.

14.
Transl Psychiatry ; 13(1): 28, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720847

RESUMO

Age-related dopamine reductions have been suggested to contribute to maladaptive working memory (WM) function in older ages. One promising intervention approach is to increase physical activity, as this has been associated with plasticity of the striatal dopamine system and WM improvements, however with individual differences in efficacy. The present work focused on the impact of individual differences in white-matter lesion burden upon dopamine D2-like receptor (DRD2) availability and WM changes in response to a 6 months physical activity intervention. While the intervention altered striatal DRD2 availability and WM performance in individuals with no or only mild lesions (p < 0.05), no such effects were found in individuals with moderate-to-severe lesion severity (p > 0.05). Follow-up analyses revealed a similar pattern for processing speed, but not for episodic memory performance. Linear analyses further revealed that lesion volume (ml) at baseline was associated with reduced DRD2 availability (r = -0.41, p < 0.05), and level of DRD2 change (r = 0.40, p < 0.05). Taken together, this study underlines the necessity to consider cerebrovascular health in interventions with neurocognitive targets. Future work should assess whether these findings extend beyond measures of DRD2 availability and WM.


Assuntos
Envelhecimento , Exercício Físico , Memória de Curto Prazo , Plasticidade Neuronal , Substância Branca , Humanos , Cognição , Dopamina , Substância Branca/diagnóstico por imagem
15.
Cereb Cortex ; 33(9): 5075-5081, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36197324

RESUMO

It is well documented that some brain regions, such as association cortices, caudate, and hippocampus, are particularly prone to age-related atrophy, but it has been hypothesized that there are individual differences in atrophy profiles. Here, we document heterogeneity in regional-atrophy patterns using latent-profile analysis of 1,482 longitudinal magnetic resonance imaging observations. The results supported a 2-group solution reflecting differences in atrophy rates in cortical regions and hippocampus along with comparable caudate atrophy. The higher-atrophy group had the most marked atrophy in hippocampus and also lower episodic memory, and their normal caudate atrophy rate was accompanied by larger baseline volumes. Our findings support and refine models of heterogeneity in brain aging and suggest distinct mechanisms of atrophy in striatal versus hippocampal-cortical systems.


Assuntos
Envelhecimento , Individualidade , Humanos , Envelhecimento/patologia , Encéfalo/patologia , Hipocampo/patologia , Imageamento por Ressonância Magnética , Atrofia/patologia
16.
Front Hum Neurosci ; 16: 997131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438629

RESUMO

Background: Autonomous motivation to exercise occurs when the activity is voluntary and with a perceived inherent satisfaction from the activity itself. It has been suggested that autonomous motivation is related to striatal dopamine D2/3-receptor (D2/3R) availability within the brain. In this study, we hypothesized that D2/3R availability in three striatal regions (nucleus accumbens, caudate nucleus, and putamen) would be positively associated with self-reported autonomous motivation to exercise. We also examined this relationship with additional exploratory analyses across a set of a priori extrastriatal regions of interest (ROI). Methods: Our sample comprised 49 older adults (28 females) between 64 and 78 years of age. The D2/3R availability was quantified from positron emission tomography using the non-displaceable binding potential of [11C]-raclopride ligand. The exercise-related autonomous motivation was assessed with the Swedish version of the Behavioral Regulations in Exercise Questionnaire-2. Results: No significant associations were observed between self-reported autonomous motivation to exercise and D2/3R availability within the striatum (nucleus accumbens, caudate nucleus, and putamen) using semi-partial correlations controlling for ROI volume on D2/3R availability. For exploratory analyses, positive associations were observed for the superior (r = 0.289, p = 0.023) and middle frontal gyrus (r = 0.330, p = 0.011), but not for the inferior frontal gyrus, orbitofrontal cortex, anterior cingulate cortex, or anterior insular cortex. Conclusion: This study could not confirm the suggested link between striatal D2/3R availability and subjective autonomous motivation to exercise among older adults. The exploratory findings, however, propose that frontal brain regions may be involved in the intrinsic regulation of exercise-related behaviors, though this has to be confirmed by future studies using a more suitable ligand and objective measures of physical activity levels.

17.
Sci Rep ; 12(1): 13886, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974034

RESUMO

Higher general cognitive ability (GCA) is associated with lower risk of neurodegenerative disorders, but neural mechanisms are unknown. GCA could be associated with more cortical tissue, from young age, i.e. brain reserve, or less cortical atrophy in adulthood, i.e. brain maintenance. Controlling for education, we investigated the relative association of GCA with reserve and maintenance of cortical volume, -area and -thickness through the adult lifespan, using multiple longitudinal cognitively healthy brain imaging cohorts (n = 3327, 7002 MRI scans, baseline age 20-88 years, followed-up for up to 11 years). There were widespread positive relationships between GCA and cortical characteristics (level-level associations). In select regions, higher baseline GCA was associated with less atrophy over time (level-change associations). Relationships remained when controlling for polygenic scores for both GCA and education. Our findings suggest that higher GCA is associated with cortical volumes by both brain reserve and -maintenance mechanisms through the adult lifespan.


Assuntos
Cognição , Reserva Cognitiva , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Atrofia , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Adulto Jovem
18.
BMC Public Health ; 22(1): 1082, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641971

RESUMO

BACKGROUND: We previously reported the effects of two cluster-randomized 6-month multi-component workplace interventions, targeting reducing sedentary behavior or increasing physical activity among office workers, on movement behaviors and cardiorespiratory fitness. The primary aim of this study was to investigate the effects of these interventions on cognitive functions compared to a wait-list control group. The secondary aims were to examine if changes in cognition were related to change in cardiorespiratory fitness or movement behaviors and if age, sex, or cardiorespiratory fitness moderated these associations. METHODS: Both interventions encompassed multi-components acting on the individual, environmental, and organizational levels and aimed to change physical activity patterns to improve mental health and cognitive function. Out of 263 included participants, 139 (mean age 43 years, 76% females) completed a neuropsychological test battery and wore accelerometers at baseline and 6-month follow-up. The intervention effect (aim 1) on cognitive composite scores (i.e., Executive Functions, Episodic Memory, Processing Speed, and Global Cognition) was investigated. Additionally, associations between changes in movement behaviors and cardiorespiratory fitness, and changes in cognition were examined (aim 2). Moreover, age, sex, and cardiorespiratory fitness level were investigated as possible moderators of change associations (aim 3). RESULTS: Overall, cognitive performance improved from baseline to follow-up, but the change did not differ between the intervention groups and the control group. Changes in cardiorespiratory fitness or any movement behavior category did not predict changes in cognitive functions. The association between changes in time in bed and changes in both Executive Function and Global Cognition were moderated by age, such that a more positive relation was seen with increasing age. A less positive association was seen between changes in sedentary behavior and Processing Speed for men vs. women, whereas higher cardiorespiratory fitness was related to a more positive association between changes in moderate-intensity physical activity and Global Cognition. CONCLUSION: The lack of an intervention effect on cognitive functions was expected since the intervention did not change movement behavior or fitness. Age, sex, and cardiorespiratory fitness level might moderate the relationships between movement behaviors and cognitive functions changes. TRIAL REGISTRATION: ISRCTN92968402 . Registered 09/04/2018.


Assuntos
Aptidão Cardiorrespiratória , Cognição , Adulto , Aptidão Cardiorrespiratória/psicologia , Função Executiva , Exercício Físico/psicologia , Feminino , Humanos , Masculino , Comportamento Sedentário
19.
Front Hum Neurosci ; 16: 841874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392122

RESUMO

Knee proprioception deficits and neuroplasticity have been indicated following injury to the anterior cruciate ligament (ACL). Evidence is, however, scarce regarding brain response to knee proprioception tasks and the impact of ACL injury. This study aimed to identify brain regions associated with the proprioceptive sense of joint position at the knee and whether the related brain response of individuals with ACL reconstruction differed from that of asymptomatic controls. Twenty-one persons with unilateral ACL reconstruction (mean 23 months post-surgery) of either the right (n = 10) or left (n = 11) knee, as well as 19 controls (CTRL) matched for sex, age, height, weight and current activity level, performed a knee joint position sense (JPS) test during simultaneous functional magnetic resonance imaging (fMRI). Integrated motion capture provided real-time knee kinematics to activate test instructions, as well as accurate knee angles for JPS outcomes. Recruited brain regions during knee angle reproduction included somatosensory cortices, prefrontal cortex and insula. Neither brain response nor JPS errors differed between groups, but across groups significant correlations revealed that greater errors were associated with greater ipsilateral response in the anterior cingulate (r = 0.476, P = 0.009), supramarginal gyrus (r = 0.395, P = 0.034) and insula (r = 0.474, P = 0.008). This is the first study to capture brain response using fMRI in relation to quantifiable knee JPS. Activated brain regions have previously been associated with sensorimotor processes, body schema and interoception. Our innovative paradigm can help to guide future research investigating brain response to lower limb proprioception.

20.
Neuroimage ; 240: 118405, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34280529

RESUMO

Ageing leads to a decline in white matter microstructure and dexterous function of the hand. In adolescents, it has previously been shown that the degree of right-left asymmetry in the corticospinal tract (CST) is linearly related with right-left asymmetry in dexterity. Here, we tested whether this association is also expressed in older adults. Participants completed a simple circle drawing task with their right and left hand as a measure of dexterity and underwent whole-brain diffusion weighted imaging at 3 Tesla (n = 199; aged 60-72 years). Fractional anisotropy and mean diffusivity of right and left CST were extracted from a manually defined region-of-interest. Linear regression analyses were computed to replicate the analyses in adolescents. Frequentist analyses were complemented with a Bayesian analytical framework. Outcome measures were compared with those previously reported in adolescents (aged 11-16 years). Asymmetries in white matter microstructure of the CST were evident and comparable to the degree of lateralisation observed in adolescence. Similarly, asymmetries in dexterity were evident, but to a lesser degree than in adolescents. Unlike in adolescents, we found no evidence of a linear relationship between asymmetries in CST microstructure and dexterity. Complementary Bayesian regression analysis provided moderate evidence in favour of the null hypothesis, pointing towards a lack of association between the structural and functional measures of right-left asymmetry. Our findings are compatible with the notion that, by late adulthood, a diverging impact of age on white matter structure and dexterous hand function dilutes the structure-function relationship between CST microstructure and manual proficiency that has been reported in adolescents.


Assuntos
Lateralidade Funcional/fisiologia , Imageamento por Ressonância Magnética/métodos , Desempenho Psicomotor/fisiologia , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/fisiologia , Treinamento de Força/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...